Minimax Subsampling for Estimation and Prediction in Low-Dimensional Linear Regression
نویسندگان
چکیده
Subsampling strategies are derived to sample a small portion of design (data) points in a low-dimensional linear regression model y = Xβ+ε with near-optimal statistical rates. Our results apply to both problems of estimation of the underlying linear model β and predicting the real-valued response y of a new data point x. The derived subsampling strategies are minimax optimal under the fixed design setting, up to a small (1 + ǫ) relative factor. We also give interpretable subsampling probabilities for the random design setting and demonstrate explicit gaps in statistial rates between optimal and baseline (e.g., uniform) subsampling methods.
منابع مشابه
On the Minimax Optimality of Block Thresholded Wavelets Estimators for ?-Mixing Process
We propose a wavelet based regression function estimator for the estimation of the regression function for a sequence of ?-missing random variables with a common one-dimensional probability density function. Some asymptotic properties of the proposed estimator based on block thresholding are investigated. It is found that the estimators achieve optimal minimax convergence rates over large class...
متن کاملMinimax Linear Regression under Measurement Constraints
We consider the problem of linear regression under measurement constraints and derive computationally feasible subsampling strategies to sample a small portion of design (data) points in a linear regression model y = Xβ + ε. The derived subsampling algorithms are minimax optimal for estimating the regression coefficients β under the fixed design setting, up to a small (1 + ) relative factor. Ex...
متن کاملMinimax rates of estimation for high-dimensional linear regression over lq-balls
Consider the high-dimensional linear regression model y = Xβ∗ +w, where y ∈ R is an observation vector, X ∈ R is a design matrix with d > n, the quantity β∗ ∈ R is an unknown regression vector, and w ∼ N (0, σI) is additive Gaussian noise. This paper studies the minimax rates of convergence for estimating β∗ in either l2-loss and l2-prediction loss, assuming that β∗ belongs to an lq-ball Bq(Rq)...
متن کاملMinimax risks for sparse regressions: Ultra-high dimensional phenomenons
Abstract: Consider the standard Gaussian linear regression model Y = Xθ0 + ǫ, where Y ∈ R is a response vector and X ∈ R is a design matrix. Numerous work have been devoted to building efficient estimators of θ0 when p is much larger than n. In such a situation, a classical approach amounts to assume that θ0 is approximately sparse. This paper studies the minimax risks of estimation and testing...
متن کاملTruncated Linear Minimax Estimator of a Power of the Scale Parameter in a Lower- Bounded Parameter Space
Minimax estimation problems with restricted parameter space reached increasing interest within the last two decades Some authors derived minimax and admissible estimators of bounded parameters under squared error loss and scale invariant squared error loss In some truncated estimation problems the most natural estimator to be considered is the truncated version of a classic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1601.02068 شماره
صفحات -
تاریخ انتشار 2016